翻訳と辞書
Words near each other
・ Shift work (disambiguation)
・ Shift work sleep disorder
・ Shift-and-add
・ Shift-invariant system
・ Shift-Minus Vol. 1
・ Shift-reduce parser
・ Shift-share analysis
・ Shift-Work (album)
・ Shifta
・ Shifta War
・ Shiftability theory
・ Shiftboard
・ SHIFTCOR
・ Shifted force method
・ Shifted Gompertz distribution
Shifted log-logistic distribution
・ Shiftee
・ Shifter
・ Shifter (bicycle part)
・ Shifters
・ Shiftgig
・ Shifting (linguistics)
・ Shifting balance theory
・ Shifting baseline
・ Shifting Baselines
・ Shifting bottleneck heuristic
・ Shifting burden of persuasion
・ Shifting City
・ Shifting cultivation
・ Shifting dullness


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Shifted log-logistic distribution : ウィキペディア英語版
Shifted log-logistic distribution


where z=(x-\mu)/\sigma\,|
cdf =\left(1+(1 + \xi z)^\right)^ \,

where z=(x-\mu)/\sigma\,|
mean =\mu + \frac(\alpha \csc(\alpha)-1)

where \alpha= \pi \xi\, |
median =\mu \,|
mode =\mu + \frac\left(- 1 \right ) |
variance = \frac(\csc(2 \alpha) - (\alpha \csc(\alpha))^2 )

where \alpha= \pi \xi\, |
skewness =|
kurtosis =|
entropy =|
mgf =|
char =|
}}
The shifted log-logistic distribution is a probability distribution also known as the generalized log-logistic or the three-parameter log-logistic distribution.〔
〕〔
〕 It has also been called the generalized logistic distribution, but this conflicts with other uses of the term: see generalized logistic distribution.
==Definition==
The shifted log-logistic distribution can be obtained from the log-logistic distribution by addition of a shift parameter \delta. Thus if X has a log-logistic distribution then X+\delta has a shifted log-logistic distribution. So Y has a shifted log-logistic distribution if \log(Y-\delta) has a logistic distribution. The shift parameter adds a location parameter to the scale and shape parameters of the (unshifted) log-logistic.
The properties of this distribution are straightforward to derive from those of the log-logistic distribution. However, an alternative parameterisation, similar to that used for the generalized Pareto distribution and the generalized extreme value distribution, gives more interpretable parameters and also aids their estimation.
In this parameterisation, the cumulative distribution function of the shifted log-logistic distribution is
: F(x; \mu,\sigma,\xi) = \frac\right)^}
for 1 + \xi(x-\mu)/\sigma \geqslant 0, where \mu\in\mathbb R is the location parameter, \sigma>0\, the scale parameter and \xi\in\mathbb R the shape parameter. Note that some references use \kappa = - \xi\,\! to parameterise the shape.〔〔
The probability density function is
: f(x; \mu,\sigma,\xi) = \frac\right)^}
\right)^\right )^2},
again, for 1 + \xi(x-\mu)/\sigma \geqslant 0.
The shape parameter \xi is often restricted to lie in (), when the probability density function is bounded. When |\xi|>1, it has an asymptote at x = \mu - \sigma/\xi. Reversing the sign of \xi reflects the pdf and the cdf about x=\mu..

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Shifted log-logistic distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.